
A continuation of the MySQL tutorial

On our last MySQL tutorial, we left off at the stage where we
downloaded the 2008 fire hydrant parking violation file.

From there, we ran queries that allowed us to summarize
information in some of the same ways we did with the pivot
tables.

However, working with merely one table containing a few
thousand records is only a starting point to exploiting the
power of MySQL. Now we want to build a master table
containing data of all the years from 2008 to 2014. This will
allow to perform queries that reveal patterns – and story ideas
-- over the span of several years.

There are two ways to do this: create a master table into which
we can import the individual tables; use a query to combine all
the tables.

The advantage of the second method is that it takes up less
space on your hard drive. So this is essentially how it works.

You write a query that allows you to pull records from each
table. In MySQL-speak, that query is called a “View”. Whenever
a query is run against this view, it recovers the data from each
table, and reassembles that data – fines for parking too close to
fire hydrants, times of day, street names, etc. -- in a single
result. So, essentially, treat the “view” as all the tables put

http://www.davidmckie.com/Tutorial%20for%20importing%20Ottawa%20Fire%20Hydrant%20Parking%20Violation%20Data%20Into%20MySQL.pdf

together. If you’re still confused, it should be clearer after
completing the tutorial, which will walk you through the paces
of creating this strange thing we’re calling a “view”.

Let’s get started.

1. Download the zip file containing the rest of the Ottawa fire
hydrant tables and save them as individual tables in the
same area on your hard drive that contains the first table.

2. We have to create a SEPARATE table for EACH of the
subsequent parking violations tables for 2008 to 2014 in a
new query browser or tab.

3. Select a new query tab, from the “File” section of the
menu, or by clicking on the small “SQL” icon right
underneath “File”.

4. We will then copy the formula MySQL used to create the
2008 data into this new query tab.

5. To do this, right-click on the
“ottawa_hydrant_violations_2008” table in your Parking
schema to obtain a drop-down menu which you can see in

http://www.davidmckie.com/HydrantViolations_2008-2014.zip

this screen shot.

6. Select the “Send to SQL Editor” option, and then the
“Create Statement” option.

7. The “Create Statement” option will populate the browser
to the right with the “CREATE TABLE” query.

8. We have created a table for 2008. Now we have to create

tables for the rest of the years. But instead of doing it
manually like we did in the first tutorial, all we have to do
is copy this query, paste it below, and then change the

year to 2009.

9. Note that the entire “CREATE TABLE” query is in brackets.
The part outside the brackets, highlighted above, is added
automatically and is the information MySQL needs to
import the table. Once again, notice that we changed the
year of the table we’ve just copied.

10. Repeat the steps for the remaining years, making sure
to leave an empty row between each individual query, and
ensuring that each query ends with a semi-colon.

11. If you refresh your Parking Schema to the left, you’ll
see all the tables.

12. By selecting the “Refresh All” option, you’ll see the

new tables.
13. Now that we have all of our CREATE TABLE queries in

one place, let’s save the queries as one file by clicking on
the “File” section of the menu at the top of the MySQL

Workbench browser.

14. Save the script in the same section of your hard drive
that contains the tables for this tutorial.

15. To download the MySQL script with the CREATE
TABLE queries, please click here. Save this query and open
it in a Workbench query browser to see all the queries in
one tab.

16. Open a new query tab.
17. Make sure that you have established your schema, in

the case “Parking”, as your “default” schema. (NOTE: If
you neglect to do this, MySQL won’t know where to find
the table. You can also accomplish the same goal by using
this query at beginning of the entire exercise: “USE
Parking”. This query instructs MySQL to use the Parking
place all the tables into the Parking schema.)

18. Now we can use the “LOAD DATA LOCAL INFILE”
command to populate each table.

19. Run the query.
20. Hit enter, and in line number eight, let’s use a SELECT

query to count the number of records to ensure that we

http://www.davidmckie.com/NewHydrantViolationCreateTablesForTutorial.sql

got everything.

21. To run the “SELECT COUNT” query, highlight query,

and then run it.

22. When pasting queries in the same tab – more

convenient than creating a brand new tab for each query –
be sure end the preceding query with a semi-colon, enter
a blank row, and then create a new query, which you
HIGHLIGHT, as you can see in the screen shot above, and
then run. If you neglect to highlight the queries
individually, MySQL will run them all, giving you skewed
results. If you accidentally do this, you can simple empty

the table of all the data using the “TRUNCATE” query
(“TRUNCATE ottawa_hydrant_violations_2009”), and then
re-run the load query.

23. We have successfully loaded the 2009 data into the
table we’ve created.

24. Hit enter, and use a SELECT query to see the table.

25. We have successfully imported the 2009 data into the

table!!
26. Now complete the same step – in the same query tab

– for 2010, making sure to enter a blank row, and change

the year of the table in the LOAD statement, and the table
name after the “INTO TABLE” portion of the script.

27. To repeat, be sure to highlight each section of the

query that you want to run. In this case, we are loading the
data into the 2010 table, then we counting the records to
ensure we got everything, and then selecting the table to
make sure all the data is in the right format.

28. Repeat the same steps for the rest of the years: 2011,
2012, 2013, 2014.

29. Now we are ready to use a query to create a master
that will draw data from each individual table.

30. Save the select query tab (give it a meaningful title)
and open a new one.

31. We will use a “UNION ALL” query to do this, which is
covered on pages 197 to 198 of Computer-Assisted
Reporting.

32. This is what the query looks like:

33. This is a CREATE VIEW query. The

“ottawa_hydrant_violations_master_view” name is what
we are giving to the view. Run the query.

34. To find this table, go to your Schema on the left of the
MySQL Workbench browser, scroll down to the “Views”
section, and click on the arrow to the left of the “Views”
icon to see the individual tables.

35. Now let’s use our “SELECT COUNT(*)” query to see
the number of records.

36. Running thE query on the master view table that

we’ve created, pulls all the records from each of the tables
above. As we mentioned at the beginning of this tutorial,
this is a good method to use because the view you’ve
created does not take up any additional hard-drive space. I
would also draw your attention to the instruction we’ve
given the browser, which is to place no limits (“Don’t
Limit’) on the number of records we import, a drop-down
menu provides options that limit the number of rows. This

comes in handy if you’re dealing with a table that contains
millions of records. Instead of loading the entire table,
which could crash your hard drive, you just use
Workbench’s limit option to import the first few thousand
rows, just to make sure that the dataset is intact.

37. Now we can begin running queries that pull data from
all the tables.

38. Be sure to click the arrow beside your view table on
the left to get the column headings.

39. This allows you to see which columns you want to

import, and then do so by simply clicking on the column
name to produce it in your query.

40. So if we wanted to select certain columns, we would
click on each one we want to import, and separate it with

a comma.

41. In this example, we want to select the DATE_NEW,
STREET, and AMOUNTDUE columns from the tables.

42. To sort the amounts in descending order, we need to
add and “ORDER BY” phrase to our query.

43. If you’re happy with this table, you can export it as a

csv file, by selecting the “Export” tab also highlighted
above.

44. In addition to straight-forward select queries, we
might want to group certain fields (as we did in pivot
tables) and then COUNT the number of tickets. To count
the number of fines for each year, and then sort them in
descending order, we would use the query highlighted
below.

45. It seems as though 2008 was the banner year for fire

hydrant tickets. Let’s unpack this statement. We’re using

the “Year” function that we saw in Excel to pull the year
out of the date field. The “AS” part of the statement
indicates that we want to use an “alias” or a new word for
that column, as we can see in the grid above. Then we
want to count the number of fines, using the “COUNT”
function that we’ve also seen in Excel. We are pulling
these files from our master table or view that we’ve
created, grouping the data by the date (the alias) and
ordering the Number (the alias) in descending order.
Please use pages 183 to 200 of Computer-Assisted
Reporting as a handy reference.

46. If you’re happy with this result, you can also export it,
and then keep going with new queries in the same query
tab, making sure to save each one as a csv file.

ADDITIONAL INFORMATION CONCERNING MYSQL
MYSQL queries can be complicated. However, they are always built upon the same basic groundwork
that we’ve discussed in the text book, and which we can see in the sections to follow. The first section is
based upon the language conventions in MYSQL.

LANGUAGE CONVENTIONS

In MYSQL, names of created objects and keywords, as well as a variety of other objects, each have
distinct requirements in their names.

 A query is a single bit of MYSQL code. A query is finished with a semicolon (;)

A Script is anywhere from one to many queries. Generally, a script has a specific purpose. Any of the
complete files given with this could be called a script.

A Clause is a portion of a MYSQL script. For example, in SELECT * FROM table_name WHERE x = 1, there
are 3 clauses: SELECT, FROM, and WHERE.

Created Objects and Column Names

Cannot Contain Spaces (generally, underscores are used “table_name”)

Strings

Whenever you input a string, or a sentence or words, etc., they must be surrounded by single quotes
(‘person’s name’), or double quotes (“person’s name”)

Keywords

Keywords are any words recognized by MYSQL. This includes things such as SELECT, CREATE, UPDATE,
DELETE

MYSQL does not require keywords to be in all caps, though they are for this document, to distinguish
them

	Additional Information Concerning MYSQL
	Language Conventions
	Created Objects and Column Names
	Strings
	Keywords

